
1

CS325 – COMPILER DESIGN

LEXING (SCANNING)

Dr. Gihan R. Mudalige
g.mudalige@warwick.ac.uk

Last updated : 06/10/2017 11:45

CS325 COMPILER DESIGN OCT 2017

LEXING

 Recall from last lecture that Lexing (also known as scanning) transform a stream of characters

into a stream of words (also known as tokens) in some language.

 The Lexer sees a sequence of characters as input

 And outputs a sequence of tokens
 and a symbol table

int pos;

int init;

int rate;

main() {

pos = init + rate * 60;

}

int[space]pos;[newline]int[space]init;[newline]int

[space]rate;[newline]main()[newline]{[newline]pos

[space]=[space]init[space]+[space]rate[space]*[space]

60;[newline]}[newline][eof]

<keyword,int>, <id,1>, <“;”>,

<keyword,int>, <id,2>, <“;”>,

<keyword,int>, <id,3>, <“;”>,

<id,main>, < “(“ >, < “)” >,

<“{“>, <id,1>, <op,”=“>, <id,2>,

<op,”+”>, <id,3>, <op,”*”>,

<num, 4>, <“;”>, <“}”>, <eof>

1 pos …

2 init …

3 rate …

4 num 60

Symbol table

CS325 COMPILER DESIGN OCT 2017

LEXING

The Lexical analyser will :
 Scan the input one character at a time
 Remove white space (blank, newline, tab, etc.)
 Groups the characters into meaningful sequences called lexemes
 For each lexeme, produces as output a token of the form: <token-name, optional attribute-value>
 Do error report/recovery

 The stream of tokens is sent to the parser for syntax analysis
 getNextToken – get the lexer to read characters from its input until it can identify the next lexeme

and produce for it the next token, which is returned to the parser

CS325 COMPILER DESIGN OCT 2017

LEXING

 Additionally the lexical analyzer interacts with the symbol table
When a lexeme constituting an identifier is detected, that lexeme is entered into the symbol table
 Sometimes the symbol assists in determining the correct token to be passed to the parser

 Lexical errors – misspellings of identifiers, keywords, or operators and missing quotes around text
intended as a string

CS325 COMPILER DESIGN OCT 2017

LEXING – SOME TERMINOLOGY

 Token - a pair consisting of a token name and an optional attribute value, <name, opt-attrib-val>
 Token name is an abstract symbol representing a kind of lexical unit (e.g. keyword, identifier)
 Attribute value - e.g. token number matches both 0 and 1, then the attributes of the token

are 0 and 1

 Pattern - description of the form that the lexemes of a token may take
 For a keyword (e.g. if, else, while) as a token, the pattern is just the sequence of

characters that form the keyword
 For identifiers and some other tokens, the pattern is a more complex structure that is

matched by many strings

 Lexeme - a sequence of characters in the source program that matches the pattern for a token
and is identified by the lexical analyzer as an instance of that token.

CS325 COMPILER DESIGN OCT 2017

EXAMPLES OF TOKENS

printf("Total = %d\n", score);

 printf and score are lexemes matching the pattern for token id (identifier)
 "Total = %d\n" is a lexeme matching literal

 The pattern for token number matches both 0 and 1, in this case the lexer returns the token
together with an attribute that describes the lexeme that was matched

< number, 0> and < number, 1>

 The token name influences parsing decisions (in syntax analysis),
 The attribute value influences translation of tokens after the parse (in semantic analysis)

CS325 COMPILER DESIGN OCT 2017

TOKEN ATTRIBUTES AND SYMBOL TABLE ENTRIES

 Operators, punctuation, and keywords usually do not need an attribute value
Matching identifiers, ids, usually get an entry into the symbol table and a pointer to that entry as

the attribute of the token

 For the Fortran expression above, we get the following tokens:

CS325 COMPILER DESIGN OCT 2017

LEXING - OVERVIEW

 Recognizers - program that identifies words in a stream of characters

 Regular expressions - a formal notation for specifying syntax

 Stepwise approach to converting regular expressions into a recognizer

CS325 COMPILER DESIGN OCT 2017

RECOGNIZER – VERY (VERY) SIMPLE EXAMPLE

 Recognizer for identifying the key word “new”

 Assume that NextChar() returns the next character
 The code simply tests for ‘n’ followed by ‘e’ followed by ‘w’
 The transition diagram to the left diagrammatically shows this recognizer
 s0 - Start state and s3 - accepting state

CS325 COMPILER DESIGN OCT 2017

COMBINING THE RECOGNIZERS

 Recognizer for identifying the key word “while”

We can combine states to recognize multiple words

Recognizer for “new” and “not“

Recognizer for “new”, “not“ and “while”

CS325 COMPILER DESIGN OCT 2017

FINITE AUTOMATONS

 The transition diagrams serve as abstractions for the recognizers
 They can also be viewed as formal mathematical objects, called finite automata, that specify

recognizers

 Formally a Finite automata (FA) is given by a five-tuple (S, Σ, δ, s0, SA) where

S – Finite set of states in the recognizer along with an error state se

Σ – Finite alphabet used by the recognizer. (Typically the union of edge labels in the
transition diagram)

δ(s,c) – Recognizer’s transition function. Maps each state s ϵ S and each character c ϵ Σ

into some next state. In state si with input character c, the FA takes the transition

s0 – Start state
SA – The set of accepting states, SA ⊆ S. Each state in SA appears as a double circle in the

transition diagram.

A formalism for recognizers that has a finite set of
states, an alphabet, a transition function, a start
state, and one or more accepting states

CS325 COMPILER DESIGN OCT 2017

EXAMPLE FINITE AUTOMATON SPECIFICATION

The FA for new or not or while

Alphabet

Set of states

Transition function

Start state

Accepting States

CS325 COMPILER DESIGN OCT 2017

ALPHABET, WORD AND LANGUAGE

 An Alphabet is any finite set of symbols.

e.g. The set {0, 1} is the binary alphabet, ASCII symbols (128 symbols), Unicode (~ 100k symbols)

 A String over and alphabet is a finite sequence of symbols drawn from that alphabet.

The terms Sentence and Word are often used as synonyms for String

The empty string, denoted by ε, is the string of length zero.

 A language is any countable set of strings over some fixed alphabet. The definition of language

does not require that any meaning be ascribed to the strings in the language.

 A Language is defined using grammars – this is checked during parsing (i.e. syntax analysis)

 But, identifying the words that belong to that language is done by a recognizer (i.e. lexing)

We need to be able to check if any string on the alphabet is a member of the language.

The way this is done is by describing a recognizing automaton

CS325 COMPILER DESIGN OCT 2017

RECOGNIZER FOR MORE COMPLEX WORDS

 But could we recognize a number with such a recognizer ?
 A specific number such as 113.4 is easy

 But to be useful, we need a transition diagram that can recognize any number
 Transition diagram for unsigned integers

Does not end,
Violates the stipulation that S is finite

Simplify using cycles

CS325 COMPILER DESIGN OCT 2017

A RECOGNIZER FOR UNSIGNED INTEGERS

CS325 COMPILER DESIGN OCT 2017

A RECOGNIZER FOR IDENTIFIER NAMES

 A simplified version of the rule that governs identifier names in Algol-like languages (C, C++, Java)
 An identifier consists of an alphabetic character followed by zero or more alphanumeric
characters.

Many programming languages extend the notion of alphabetic character to include designated
special characters, such as the underscore.

 As you can see we can represent character-by-character scanners with a transition diagram
 That diagram, in turn, corresponds to a finite automaton.
 Small sets of words are easily encoded in acyclic transition diagrams.
 Infinite sets require cyclic transition diagrams.

CS325 COMPILER DESIGN OCT 2017

REGULAR EXPRESSIONS

 FAs (and the transition diagrams they represent) are not particularly concise specifications.

 For an efficient scanner implementation, a concise notation is required and a way of turning those

specifications into an FA and into code that implements the FA.

 This notation is provided by Regular Expressions (REs)

You have all seen REs before …. but lets start with some very simple examples:

 RE for language with single word new will be new (i.e. the same spelling)
 RE for language with only two words new and not can be n(ew|ot)

 The RE for unsigned integers :

0|(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*

An unsigned integer is either a zero, or a digit that is not a zero followed by more digits including
zero.

 Zero or more occurrences is given by *

We call the * operator Kleene closure, or closure for short.

CS325 COMPILER DESIGN OCT 2017

FORMALIZING REGULAR EXPRESSIONS

 A Regular Expression (RE) describes a set of strings over the characters contained in some
alphabet, Σ, augmented with a character ε that represents the empty string.

 For a given RE, r, we denote the language that it specifies as L(r)

 A Regular Expression is built up from three basic operations

1. Alternation - The alternation, or union, of two sets of strings, R and S, denoted by R | S ,
is { x | x ∈ R or x ∈ S }

2. Concatenation - The concatenation of two sets R and S, denoted RS , contains all strings
formed by prepending an element of R onto one from S, or { xy | x ∈ R and y ∈ S }

3. Closure - The Kleene closure of a set R, denoted R* is

The union of the concatenations of R with itself, zero or more times

CS325 COMPILER DESIGN OCT 2017

FORMALIZING REGULAR EXPRESSIONS

 A language that can be described by a Regular Expression is called a regular language

 Regular Expressions over a given alphabet Σ are the smallest set of expressions that consists of :

R = ε

| ‘ c ’ where c ∈ Σ : Base cases for the Re
| R or R : Union of REs
| RR : Concatenation of REs
| R* : Closure of REs

CS325 COMPILER DESIGN OCT 2017

FORMALIZING REGULAR EXPRESSIONS – EXTENDED NOTATION

 Since the introduction of Kleene closure in the 1950s, many extensions have been added to
regular expressions to enhance their ability to specify string patterns

 All of the following can be derived using the previous three basic rules

 One or more instances - The unary, postfix operator + represents the positive closure of a regular
expression. E.g. R+ denotes one or more instances of R

 Zero or one instance - The unary postfix operator ? means "zero or one occurrence."
E.g. R? is equivalent to R | ε

 Character classes - A regular expression a1 | a2 | a3 | … | an where the ai 's are each symbols of
the alphabet, can be replaced by the shorthand [a1a2a3…an]. When a1 , a2 , a3 , … , an is a logical
sequence it can be replaced by the shorthand [a1-an]

E.g: a|b|c|…|z is equal to [a-z]

 Complement operator - The notation ^c specifies the set (Σ – c) the complement of c with
respect to Σ. In other words it represents “any character except the ones listed. ”
E.g. [^A-Za-z] matches any character that is not an uppercase or lowercase letter.

 Parenthesis – You can group parts of an RE with round brackets - () or parentheses,
This allows to apply a quantifier to the entire group or to restrict alternation to part of the RE.

CS325 COMPILER DESIGN OCT 2017

REGULAR EXPRESSIONS – SOME EXAMPLES

 Identifiers for C/C++/Java (Algol type languages) [_a-zA-Z][_a-zA-Z0-9]*

 identifiers limited to six characters [_a-zA-Z][_a-zA-Z0-9]{5}

 unsigned integers 0|[1-9][0-9]* , in practice many implementations accept [0-9]+

 signed integers [+-]?[0-9]+

 signed real numbers [-+]?[0-9]+\.[0-9]+ - optional sign, mandatory integer, and fraction

 Floating point numbers in scientific notation
[-+][0-9]+\.[0-9]+[eE][-+]?[0-9]+ Mandatory sign, integer, fraction, and exponent

[-+]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)? Optional sign, mandatory integer, optional fraction

and exponent

CS325 COMPILER DESIGN OCT 2017

FORMALIZING REGULAR EXPRESSIONS

 Recall that for a given RE, r, we denote the language that it specifies as L(r)

 But what does a language actually mean in this case ?

 A language defined by a regular expression is all the set of strings that can be described by that
regular expression

Examples :

 L(ε) = { “ “ }

 L(‘c’) = { “c” }

 L(1*) = { “ “, “1”, “11”, “111”, “1111”, …… } = all strings of 1s or the empty string

 L([0-9]+) = { “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9” , “10”,11”, …. }

= unsigned integers

We say that “130” ∈ L([0-9]+)
i.e. the string 130 belongs to
the language specified by the
regular expression [0-9]+

CS325 COMPILER DESIGN OCT 2017

EXAMPLE – WRITING RES FOR THE LEXEMES OF EACH TOKEN CLASS

 Given what we learn about writing REs we can now write a specification for each of the token
classes, say for a C/C++/Java type programming language

keyword = if|else|while|int|float| …
digit = 0|1|2|3|4|5|6|7|8|9 = [0–9]
digits = digit digit* = digit+ = [0–9]+
num = digits (fraction)? (exponent)?

= digits(\.digits)? ([Ee][+-]?digits)?
= digit+(\.digit+)? ([Ee][+-]?digit+)?
= [0-9]+(\.[0-9]+)? ([Ee][+-]?[0-9]+)? = RE for floats and integers

identifier – strings of letters and digits starting with a letter or an underscore
= [_a–zA–Z][_a–zA–Z0–9]*

white space – non-empty sequence of blanks, tabs and new lines
= [\t\n]+

OpenParen = (
op = \+|\-| …

CS325 COMPILER DESIGN OCT 2017

TOKENIZING

 Construct an RE matching all lexemes for all tokens - simply take the union of all the REs for all
the token classes

R = RE(keyword) | RE(num) | RE(identifier) | RE(white space) | …

R = R1 | R2 | R3 | R4 | …

 Now that we have a Regular Expression R, for matching all lexemes for all tokens, the steps taken
by the Lexer to tokenize an input sequence of characters can be stated as follows :

1. Given an input sequence of characters C1,C2,C3,C4 … Cn to the Lexer we check whether some
i (1 ≤ i ≤ n) number of characters belongs to the language of R,

That is, for 1 ≤ i ≤ n check if
C1 ,…,Ci ∈ L(R)

2. If true, then we know that C1 ,…,Ci ∈ L(Rj) for some j (i.e. Rj is one of R1 or R2 or R3 or R4 or …)

3. Remove C1 ,…,Ci from the input sequence and go to 1.

CS325 COMPILER DESIGN OCT 2017

TOKENIZING

What if different number of characters matches R ?

C1 ,…,Ci ∈ L(R) for some i (1 ≤ i ≤ n) number of characters AND
C1 ,…,Cj ∈ L(R) for some j (1 ≤ j ≤ n, j ≠ i) number of characters

C1 , C2 , C3 , C4 , C5 , C6 , C7 , C7 , C8 , C9 , C10 ,…………,Ci ,……………………. Cj ,………….

Solution : Always select (i.e. match) the longer sequence – maximal munch

Which token should be used if more than one token matches ?
E.g. “for” can be both a keyword and an identifier

for some i (1 ≤ i ≤ n) number of characters
C1 ,…,Ci ∈ L(Rj)
C1 ,…,Ci ∈ L(Rk) where j ≠ k

Solution : Uses the token class specification listed first (i.e. use Rj if j < k)
E.g. Usually keyword are listed before identifiers, thus “for” will be always matched as a

keyword token

i

j

CS325 COMPILER DESIGN OCT 2017

TOKENIZING

What if there is no match ?
C1 ,…,Ci ∉ L(R)

 This is an error and so we define another regular expression that specify strings not belonging to
the language

error = All strings not belonging to the language specified by R

 error should have the least priority in our list of specifications for token classes

R = R1 | R2 | R3 | R4 | … | Rerror

CS325 COMPILER DESIGN OCT 2017

BUILDING A SCANNER FROM REGULAR EXPRESSIONS

 Regular expressions have become the basis for writing specifications for lexers, for example write
a specification for a scanner generator such as Lex or Flex

Regular definitions Tokens, their patterns, and attribute values

CS325 COMPILER DESIGN OCT 2017

BUILDING A SCANNER FROM REGULAR EXPRESSIONS

 Regular expressions have become the basis for writing specifications for lexers, for example write
a specification for a scanner generator such as Lex or Flex -- Example portion of a Lex program

 The operators {} specify either
repetitions (if they enclose numbers)
or definition expansion
(if they enclose a name)

For identifiers (id) :
 int installID() – called to
place the lexeme found in the
symbol table
 yylval – pointer to the
symbol table

The token name ID is returned
to the parser

For numbers (number) :
 int installNum() –
puts numerical constants in to a
separate table

See Dragon book
2nd Ed. Sec 3.5 for
more details

CS325 COMPILER DESIGN OCT 2017

BUILDING A SCANNER FROM REGULAR EXPRESSIONS

While lexical analyser generators (such as Lex and Flex) automate the creation of scanners,
implementation of that software requires the simulation of a DFA – this is what we are going to learn
next

 This section develops the constructions that transform an RE into an FA that is suitable for direct
implementation

 Distinguish between Non-Deterministic FAs (NFA) and Deterministic FAs (DFA)
 Thompson’s construction, derives an NFA from an RE
 The subset construction, builds a DFA that simulates an NFA
 Hopcroft’s algorithm, minimizes a DFA
 Kleene’s construction derives an RE from a DFA – but not a direct part of scanner implementation

CS325 COMPILER DESIGN OCT 2017

RECALL THE FINITE AUTOMATON SPECIFICATION

The FA for new or not or while

Alphabet

Set of states

Transition function

Start state

Accepting States

CS325 COMPILER DESIGN OCT 2017

NONDETERMINISTIC FINITE AUTOMATA

 A Nondeterministic Finite Automaton is an FA that allows transitions on the empty string, ε, and
states that have multiple transitions on the same character

 Consider the transition graph for an FA recognizing the language of regular expression (a|b)*abb

 The FA is non-deterministic as there is multiple edges labelled a out of state 0

 Now consider the FAs for the REs a* and ab

We can combine them with an ε -transition (i.e. empty string) to form an FA for a*ab

 Again we get non-determinism as the ε - transition, in effect, gives the FA two distinct transitions
out of S0 on the letter a

CS325 COMPILER DESIGN OCT 2017

NONDETERMINISTIC FAS VS DETERMINISTIC FAS

 In contrast a Deterministic Finite Automaton (DFA) is an FA where the states have only a single
transition on the same character and does not have any ε transitions.

 Essentially a DFA is a special case of an NFA.
 Any NFA can be simulated by a DFA — which we will see how later

 But for a simple example – consider the following NFA :

 The DFA that simulates the NFA can be written as :

 Note how, the DFA does not have multiple transitions labelled by the same character out of any
state

CS325 COMPILER DESIGN OCT 2017

CONVERTING AN RE INTO AN NFA – THOMPSON’S CONSTRUCTION

We essentially use a template for building an NFA that corresponds to
 A single-letter RE and
 A transformation on NFAs that models the effect of each basic RE operator:
concatenation, alternation, and closure
 Apply the transformations in the order dictated by precedence and parentheses

CS325 COMPILER DESIGN OCT 2017

CONVERTING AN RE INTO AN NFA – EXAMPLES

 Applying Thompson’s Construction to a(b|c)*

 First build NFAs for a, b and c
 Parenthesis have higher precedence
Build NFA for b|c

 Closure has higher precedence than concatenation
Build (b|c)*

 Finally concatenate a to (b|c)*

CS325 COMPILER DESIGN OCT 2017

NFA TO DFA: THE SUBSET CONSTRUCTION

 NFA often has choice of making a transition on ε or on a real input symbol – thus simulation of an
NFA is less straightforward than for a DFA
 Therefore we need to convert an NFA into a DFA for efficient implementation

 Consider the following NFA, where the alphabet is {a,b} and assume that we are at the
start state (0) :

 There is a nondeterministic choice of ε-transitions, assume we take both choices simultaneously:

 Observe that we do not consume any input symbol to get into these two configurations of the
NFA – in fact all of states 0,1 and 2 can be thought of as one combined state

0

2

1 3

5

ε

ε

a
ε

b
4

ε

0

2

1 3

5

ε

ε

a
ε

b
4

ε

0

2

1 3

5

ε

ε

a
ε

b
4

ε

CS325 COMPILER DESIGN OCT 2017

NFA TO DFA: THE SUBSET CONSTRUCTION

 All of states 0,1 and 2 can be thought of as one combined state

 Combining NFA states based on ε-transitions allows us to eliminate ε-transitions when
constructing the DFA

 So in essence what the subset construction algorithm does is combine NFA states that can be
reached through ε-transitions to a single “subset” of states and only consider transitions based on
the input symbols between different subsets

 The set of NFA states that can be reached from some NFA state n along paths containing only ε-
transitions is called ε-closure(n)

0

2

1 3

5

ε

ε

a
ε

b
4

ε

0

2

1 3

5

ε

ε

a
ε

b
4

ε

D0

3

5

a
ε

b

4

ε

CS325 COMPILER DESIGN OCT 2017

NFA TO DFA: THE SUBSET CONSTRUCTION

When we have several choices of a next state in the NFA, we take all of the choices simultaneously
and form a set of the possible next-states - such a set of NFA states will become a single DFA state

Algorithm : Take an NFA (N, Σ, δN, n0, NA) and convert it into a DFA (D, Σ, δD, d0, DA)

Step 1: Start state of D (i.e. d0) consists of n0 (i.e. The start state of the NFA) and any states that can
be reached from n0 along paths containing only ε-transitions. We call this set of states ε-closure(n0)

Step 2 : Add d0 to the list of DFA states called Dstates

Step 3 : We say that d0 is “unmarked” and enter into the following while loop:

Set of NFA states that can
be reached from T given
an input symbol of a and
ε-transitionsU is the DFA state that

represent the NFA
states returned by the
ε-closure(move(T,a))

Add to the DFA’s Transition
function Dtran, indicating that
you can reach U from T on
receiving an input symbol of a

CS325 COMPILER DESIGN OCT 2017

NFA TO DFA: THE SUBSET CONSTRUCTION - EXAMPLE

 Lets convert the NFA for (a|b)*abb to a DFA using the subset construction algorithm
 ε-closure(n0) = ε-closure(0) = {0, 1, 2,4, 7} we call this DFA state A, add A to Dstates

 Now go into the while loop, with Dstates containing only one unmarked state, i.e. A

CS325 COMPILER DESIGN OCT 2017

EXAMPLE : CONVERT THE NFA FOR (a|b)*abb TO A DFA

 The input alphabet is {a, b} mark A
compute Dtran[A, a] = ε-closure(move(A,a))

move(A,a) = { 3, 8 }
ε-closure(move(A,a)) = {1,2,3,4,6,7,8}

Let the set of NFA states { 1,2,3,4,6,7,8 } be
represented by the DFA state B

Similarly,
Compute Dtran[A, b] = ε-closure(move(A,b))
Dtran[A, b] = {1,2,4,5,6,7} DFA state C

CS325 COMPILER DESIGN OCT 2017

EXAMPLE : CONVERT THE NFA FOR (a|b)*abb TO A DFA

 Continuing this process with the unmarked sets B and C, we eventually reach a point where all
the states of the DFA are marked

 At this point we will have the following transition table

This is basically the DFA that
simulates the NFA for (a|b)*abb

CS325 COMPILER DESIGN OCT 2017

NUMBER OF DFA STATES

 Given an NFA with N states it can be proven that there are 2N - 1 non-empty sets of NFA states

 This implies that a DFA that will simulate the NFA could potentially have exponentially more
number of states than the NFA !

 However the set of states in the DFA is finite and the DFA still makes one transition per input
symbol.

 Thus, the DFA that simulates the NFA still runs in time proportional to the length of the input
string

 The simulation of an NFA on a DFA has a potential space problem, but not a time problem

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

n1,n2,n3,n4,n6,n9 d1

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

n1,n2,n3,n4,n6,n9 d1 - n5,n8,n9,n3,n4,n6 n7,n8,n9,n3,n4,n6

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

n1,n2,n3,n4,n6,n9 d1 - n5,n8,n9,n3,n4,n6 n7,n8,n9,n3,n4,n6

n5,n8,n9,n3,n4,n6 d2

n7,n8,n9,n3,n4,n6 d3

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

n1,n2,n3,n4,n6,n9 d1 - n5,n8,n9,n3,n4,n6 n7,n8,n9,n3,n4,n6

n5,n8,n9,n3,n4,n6 d2 - - n7,n8,n9,n3,n4,n6

n7,n8,n9,n3,n4,n6 d3

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 n1,n2,n3,n4,n6,n9 - -

n1,n2,n3,n4,n6,n9 d1 - n5,n8,n9,n3,n4,n6 n7,n8,n9,n3,n4,n6

n5,n8,n9,n3,n4,n6 d2 - d2 n7,n8,n9,n3,n4,n6

n7,n8,n9,n3,n4,n6 d3 - n5,n8,n9,n3,n4,n6 d3

CS325 COMPILER DESIGN OCT 2017

ANOTHER EXAMPLE : CONVERT THE NFA FOR a(b|c)* TO A DFA

NFA states DFA state ε-closure(move(T,a)) ε-closure(move(T,b)) ε-closure(move(T,c))

n0 d0 d1 - -

n1,n2,n3,n4,n6,n9 d1 - d2 d3

n5,n8,n9,n3,n4,n6 d2 - d2 d3

n7,n8,n9,n3,n4,n6 d3 - d2 d3

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: HOPCROFT’S ALGORITHM

 The DFA that emerges from the subset construction can have a large number of states
 Some states can be merged : e.g. in the previous DFA A and C have the same move function

 To minimize the number of states in a DFA we need a technique to detect when two states are
equivalent—that is, when they produce the same behaviour on any input string

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: HOPCROFT’S ALGORITHM

The algorithm works by partitioning the states of a DFA into groups of states that cannot be
distinguished – i.e. produce the same behaviour on any input string
 Each group of states is then merged into a single state of the new minized DFA

Algorithm
Step 1: Given D states in the DFA partition the states into two groups – F and S-F, the accepting
states and the nonaccepting states. Denote this initial partitioning as P = F, S-F

Step 2: Let new partitioning Pnew = P

For (Each group G in Pnew) {
partition into subgroups such that two states s and t are in the
same subgroup if and only if for all input symbols a, states s and t have transitions on a
to states in the same group G
/* worst case, a state will be in a subgroup by itself * /
replace G in Pnew by the set of all subgroups formed

}
Step 3: If there is no change in Pnew, i.e. Pnew = P then let Pfinal = P , go to Step 4. Else go to Step 2
and repeat with Pnew in place of P

Step 4: Choose one state in each group of Pfinal as the representative for that group.
The representatives will be the states of the minimum-state DFA D'.

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: HOPCROFT’S ALGORITHM - EXAMPLE

 Initial partitioning P = {A, B, C, D} { E }
i.e. the accepting and nonaccepting states

 Now consider both groups {A, B, C, D} and { E }
and inputs a and b

 No further split possible for { E }, but can
consider splitting the group {A, B, C, D}

 On an input symbol of a all states goes to states within the same group
 On an input symbol of b states A, B, and C go to members of group {A, B, C, D}, while state D goes
to E, a member of another group

 Thus we split group {A, B, C, D} into {A, B, C} {D} and Pnew for this round is {A, B, C} {D} {E}

 Set P = Pnew and repeat

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: HOPCROFT’S ALGORITHM - EXAMPLE

 P = {A, B, C} {D} {E}
 Can split {A, B, C} into {A, C} {B} , since A and C each
go to a member of {A, B, C} on input b, while B goes
to a member of another group, {D}

 Pnew for this round is {A, C} {B} {D} {E}
 Set P = Pnew and repeat

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: HOPCROFT’S ALGORITHM - EXAMPLE

 P = {A, C} {B} {D} {E}

 But we cannot split the one remaining group
with more than one state, since A and C each go
to the same state (and therefore to the same group)
on each input.

 Thus Pfinal = {A, C} {B} {D} {E}

A’ B D E
a

b
b b

a
a

b

a

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: ANOTHER EXAMPLE – VERY QUICKLY !!

 DFA for fee | fie

 P = {S0,S1,S2,S4} {S3,S5}
 Pnew = {S0,S1,S2,S4} {S3,S5}

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: ANOTHER EXAMPLE – VERY QUICKLY !!

 DFA for fee | fie

 P = {S0,S1,S2,S4} {S3,S5}
 Pnew = {S0,S1} {S2,S4} {S3,S5}

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: ANOTHER EXAMPLE – VERY QUICKLY !!

 DFA for fee | fie

 P = {S0,S1} {S2,S4} {S3,S5}
 Pnew = {S0} {S1} {S2,S4} {S3,S5}

CS325 COMPILER DESIGN OCT 2017

DFA TO MINIMAL DFA: ANOTHER EXAMPLE – VERY QUICKLY !!

 DFA for fee | fie

CS325 COMPILER DESIGN OCT 2017

COMBINED NFA AND THE RESULTING DFA FOR SEVERAL TOKENS

Combined NFA for “IF”, IDs, NUM and FLOAT Combined DFA for “IF”, IDs, NUM and FLOAT

CS325 COMPILER DESIGN OCT 2017

IMPLEMENTING SCANNERS

 All the formalisms and algorithms we have learnt allows us to automate the construction of the
scanner

 The compiler writer creates an RE for each syntactic category
 Gives the REs as input to a scanner generator (e.g. Lex or Flex)
 Scanner generator builds NFA, DFA, minimal DFA

 At this point the scanner generator must convert the DFA into executable code
 The strategies are

 Table driven scanner
 Direct coded scanner
 Hand-coded scanner

We are not going to go into too much of details for these at this point … but one of the
recommended text books does:

 Cooper and Troczon, Engineering a Compiler - Section 2.5

CS325 COMPILER DESIGN OCT 2017

TABLE DRIVEN SCANNERS

1. Codify the DFA transitions in a table

A’ B D E
a

b
b b

a
a

b

a

a b other

A’ B A’ error

B B D error

D B E error

E B A’ error

CS325 COMPILER DESIGN OCT 2017

TABLE DRIVEN SCANNERS

2. Use the table to drive a skeleton scanner programme

Thomas Reps. ‘Maximal-munch’ tokenization in linear
time. ACM Transactions on Programming Languages
and Systems, 20(2):259–273, March 1998

[See module online material for paper]

 Table driven scanner’s table lookups can be eliminated
by generating a specialized code fragment to
implement each state – this results in what we call a
direct-coded scanner

a b other

A’ B A’ error

B B D error

D B E error

E B A’ error

δ

Print the
final
character of
a valid token

CS325 COMPILER DESIGN OCT 2017

FURTHER READING

 Cooper and Troczon, Engineering a Compiler - Chapter 2
 Aho, Lam, Sethi, Ulman, Compilers Principals Techniques and Tools – Chapter 3
 Torben Mogensen, Basic Compiler Design – Chapter 2
 Thomas Reps. ‘Maximal-munch’ tokenization in linear time. ACM Transactions on Programming
Languages and Systems, 20(2):259–273, March 1998 -- See module webpage for paper

